Beauty/Skin Studies

Beauty/Skin Studies - Human	Study Title	Study Summary
Muizzuddin, N et al.2020 Int J Vitam Nutr Res (2020), 1–10 https://doi.org/10.1024 /0300-9831/a000643	Beauty from within: Oral administration of a sulfur-containing supplement methylsulfonylmethane improves signs of skin ageing	Subjects took 1g or 3g OptiMSM per day and skin was evaluated by expert graders, instrumentation, and self-assessment. Both doses saw significant improvements in wrinkles, firmness, hydration, and elasticity. Benefits were seen by week 4 and 1g per day was effective and improving skin.
Guaitolini, E et al. 2019 J Clin Aesthet Dermatol. (2019) 12(4):40-45	Randomized, Place- bo-controlled Study of a Nutraceutical Based on Hyaluronic Acid, L-carnosine, and Methylsulfonylmethane in Facial Skin Aesthetics and Well-being	Double-blind, placebo-controlled evaluation of multicomponent nutraceutical containing 200mg HA, 500mg L-carnosine, 400mg MSM. Significant improvements in wrinkles, elasticity, and hydration across three areas of the face (glabella, periocular, commissural) using instrumental analysis. Self-assessment using a visual analogue scale reported benefits as well.
Muizzuddin, N et al.2019 Natural Medicine Journal (2019) 11(11): 1-8 OptiMSM Study using	Beneficial Effects of a Sulfur-Containing Supplement on Hair and Nail Condition	Subjects took 1g or 3g OptiMSM per day. Both doses provided significant improvements to both hair and nails measured by expert graders and self-assessment. (Hair: shine, volume, overall) (Nails: shine, overall) The 3g dose delivered quicker and stronger benefits.
Natural Medicine Journal Anthonavage, M. et al. 2015 OptMSM Study using	Effects of Oral Supplementation With Methylsulfonylmeth- ane on Skin Health and Wrinkle Reduction	Two-part study. Part one was a pre-clinical evaluation of gene expression in a 3D skin model. Results supported the design of clinical portion. Part two was a double-blind placebo controlled design. 20 healthy females randomized to take 3g MSM per day or placebo for 16 weeks. Significant improvements in skin appearance and condition were found in the treatment group

This paper is intended to provide scientific and educational information only. It is not intended for use to promote or sell any product. These statements have not been evaluated by the Food and Drug Administration. Consumption of OptiMSM* is not intended for use to diagnose, treat, cure or prevent any disease. OptiMSM* is manufactured by Bergstrom Nutrition.

when evaluated by expert grading, instrumental analysis, and

participant self-assessment.

Exercise Recovery Studies

Exercise Recovery Studies-Human	Study Title	Study Summary
Melcher et al. 2017 Gazzetta Medica Italiana - Arch per le Sci Mediche 2017, May; 176(5): 271-283 OptMSM [•] Study using	Effects of Methylsulfonylmethane supplementation on oxidative stress, muscle soreness, and perfor- mance variables following eccentric exercise	A double-blind placebo controlled study evaluating 3g of MSM/day for 28 days in healthy exercise-trained males. MSM supplementation provides some degree of muscle protection following exercise by reducing muscle soreness by approx 15-20% over placebo and providing faster recovery of isometric quadriceps force. Oxidative stress did not increase following exercise in this model.
Withee E et al. 2017 Journal of International Society of Sports Nutrition (2017) 14:24 doi 10.1186/ s12970-017-0181-z	Effects of MSM on exercise induced oxidative stress, muscle damage, and pain following a half- marathon: a double blind, randomized, placebo controlled trial	Double blind, placebo controlled study design. 22 healthy adults randomly assigned to take either 3g of MSM per day or placebo for 21 days before running a half marathon. MSM group saw clinically significant reductions in both muscle and joint pain.
van der Merwe, M. et al. 2016 Journal of Sports Medicine, vol 2016, Article ID 7498359 OptMSM [®] Study using	The Influence of Methylsulfonylmethane on Inflammation- Associated Cytokine Release before and following Streneous Exercise."	Double-blind, placebo controlled study. 40 healthy, resistance trained males received 3g MSM or placebo for 28 days before eccentric knee exercise. In-vivo cytokine analysis was performed before and through 72 hours post-exercise. Additional cytokine analysis was performed in-vitro and ex-vivo on whole blood and isolated single blood cells from a subset of subjects, with and without LPS stimulation. Results indicate MSM dampens inflammatory expression following exercise and reduces post-exercise immunosuppression.
Peel S. et al. 2015 Presented at American Society for Biomechanics Conference Aug, 2015 At Columbus, OH Published abstract and poster presentation	The Effects of MSM Supplementation on Knee Kinetics during Running, Muscle Strength, and Muscle Soreness following Eccentric Exercise- Induced Quadriceps Damage	Double-blind, placebo controlled study. 40 healthy resistance-trained men; 3 g/day for 28 days before eccentric knee exercise. Testing occurred before exercise (Baseline) then at 0hr, 24hrs, 48hrs and 72 hrs post exercise. @ 72 hrs Maximum Isometric Force (MIF) normal in MSM group but still 8% below BL for Placebo. Absolute change in muscle soreness during passive knee flexion was smaller in MSM group. Some findings of this study suggest individuals may be able to return to regular training more quickly following knee extensor damage with MSM supplementation.
Kalman D. et al. 2013 FASEB J, 2013, 27:1076.7 Published abstract and poster presentation	A Randomized Double Blind Placebo Controlled Evaluation of MSM for Exercise Induced Discomfort/Pain	Double-blind, placebo controlled study. 24 healthy adult males randomly assigned to receive either treatment or placebo for 14 days. Intervention of 3 grams of MSM per day for the 14 day period resulted in significantly lower (1.55 + 0.82 vs. 3.75 + 2.58 p=0.012) pain/discomfort 2 hours following a leg extension exercise to muscle failure when compared to the placebo group.

Nakhostin-Roohi B. 2013 Iranian J of Pharma Research 2013, 12(4): 845-853	Effect of Single Dose Administration of Methylsulfonylmethane on Oxidative Stress Following Acute Exhaustive Exercise	16 subjects randomly assigned to receive either 100mg/kg BW (6g for a 60kg person) MSM in water or placebo (just water) were subjected to treadmill running until exhaustion. Protein Carbon- yls were lower at 2, and 24 hrs post exercise. Plasma TAC was higher at 24 hrs after exercise. Serum levels of bilirubin and uric acid were significantly lower immediately after exercise in the MSM group. Results suggest a single oral dose of MSM lowers exercise induced oxidative stress in healthy untrained men, but is not adequate to significantly affect reduced glutathione levels.
Barmaki, S. et al. 2012 J. Sports Med Phys Fitness 2012;52:170-4	Effect of MSM Supple- mentation on Exercise- induced Muscle Damage and Total Antioxidant Capacity	Double-blind, placebo controlled study. 18 subjects; treatment = 50mg/kg BW/day MSM for 10 days before a 14 km run. CK and Bilirubin was significantly reduced in MSM group vs. placebo. TAC significantly increased. MSM decreased muscle damage via antioxidant capacity.
Kalman D. et al. 2012 J. of Int. Society of Sports Nut. 2012, 9:46 OptMSM [*] Study using	Influence of MSM on Markers of Exercise Recovery and Perfor- mance and Total Antioxidant Capacity	8 subjects were randomly assigned either 1.5 or 3.0g of MSM per day for 30 days. Leg extension exercise to exhaustion. TEAC increased in a dose-dependant manner. Fatigue and homocys- teine decreased in dose dependant manner. MSM may favorably influence selected markers of exercise recovery, especially at 3g/day.
Nakhostin-Roohi et al.2011 Journal of Pharmacy and Pharmacology 2011, 63:1290-1294	Effect of Chronic Supplementation with MSM on Oxidative Stress Following Acute Exercise in Untrained Healthy Men	Double-blind, placebo controlled study. 18 subjects; treatment = 50mg/kg BW/day MSM for 10 days before a 14 km run. Serum MDA, PC, GSSG, GSH, and GSH/GSSG ratio were evaluated. MDA, PC, GSSG were significantly reduced in treatment group vs. placebo and GSH and ratio were increased. MSM decreased oxidative stress following acute exercise.

Exercise Studies-Animal	Study Title	Study Summary
Sp, N et al. 2020	Methylsulfonylmethane inhibits cortisol-in-	Muscle cells from racehorses were exposed to cortisol, and cortisol + MSM. Cortisol alone increased levels of SDHA. HPRT1, and p53
Experimental and Therapeutic Medicine, 214–222. https://doi.org/ 10.3892/etm.2019.8196	duced stress through p53-mediated SDHA/ HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress.	expression. MSM inclusion normalized these markers of cortisol induced stress. The results suggest that MSM is a potential candidate for the inhibition of cortisol-induced stress.

Marañón et al. 2006

Acta Veterinaria Scandinavica 2008; 50:45 doi:10.1186/1751-0147-50 -45

Opt/MSM[®] Study using

The Effect of MSM Supplementation on Biomarkers of Oxidative Stress in Sport Horses Following Jumping Exercise 24 jumping horses divided into 3 groups; control, MSM@ 8mg/kg BW and combo of 8mg/kg MSM and Vit C 5mg/kg. Blood samples collected before and after exercise. NO, CO, Lipid Hydroperoxides, and Antioxidant enzymes, glutathione peroxidase, glutathione transferase and glutathione reductase measured. Exercise induced significant increase in lipid peroxidation, NO, and CO. Reduced glutathione, and antioxidant enzyme activity was decreased. MSM significantly ameliorated all of these exercise-related changes and the combo of MSM/Vit C potentiated this effect with some of the parameters close to pre-exercise levels.

Joint Support Studies- Human	Study Title	Study Summary
Lubis AMT et al. 2017 Acta Med Indones – Indones J Intern Med. Vol 49 Number 2 April 2017	Comparison of Glucos- amine-Chondroitin Sulfate with and without MSM in Grade I-II knee osteoarthri- tis: A double blind random- ized controlled trial	Double blind, placebo controlled study evaluated 147 patients with grade I-II knee OA. treated with either 1500mg Gluc 1200mg Chond (n=49), or 1500mg Gluc, 1200mg Chon, 500mg MSM (n=50), or placebo (n=48). GCM showed significant clinical improvement compared with GC and placebo, especially in pain.
Pagonis et al. 2014 Int Journal of Orthopae- dics 2014 June 23 1(1): 19-24 ISSN2311-5106	The Effect of Methylsul- fonylmethane on Osteoarthritic Large Joints and Mobility	Double-blind, placebo controlled study. 100 subjects took MSM 3g twice daily for 26 wks. Statistically significant improvement for MSM group in all WOMAC and SF-36 quality of life scores. No adverse effects reported.
Debbi et al. 2011 BMC Comp and Alt Med 2011, 11:50	Efficacy of Methylsulfo- nylmethane Supplemen- tation on Osteoarthritis of the Knee: A Random- ized Controlled Study	Double-blind, 49 subjects, 12 week treatment with 1.125 g of MSM 3X daily. Significant improvement seen in pain and physical function. WOMAC, VAS, KSKS, ALF scales utilized.
Kim et al. 2006 OsteoArthritis and Cartilage 2006, 14:286-294	Efficacy of MSM in Osteoarthritis Pain of the Knee: A Pilot Clinical Trial	Double-blind, placebo controlled study. 50 subjects MSM 3g twice daily for 12 wks. Significant reduction for MSM group in WOMAC pain, Urine MDA and Plasma Homocysteine. SF-36 scores indicated improvement in basic performing activities in the treatment group.
Usha and Naidu. 2004 Clin Drug Invest 2004, 24:6 353-363	Randomized, Double- Blind, Parallel, Placebo- Controlled Study of Oral Glucosamine, Methylsulfonylmethane and their Combination in Osteoarthritis	118 patients randomized to receive placebo, 500mg Glu, 500mg MSM, or combo of 500mg Glu + 500mg MSM for 12 wks. Glu, MSM and their combination produced analgesic and anti-inflam- matory effect. VAS, Lesquene index and consumption of rescue meds measured.

Joint Support Studies

Joint Support Studies- Animal	Study Title	Study Summary
Akramas et al. 2019 J Hellenic Vet Med Soc 2019, 70(2), 1561-1572	Methylsulfonylmethane alone or in combination with thiocolchicoside modulate autoimmune disease in rats with adjuvant arthritis	This study evaluated the effects of MSM alone or in combination with thiocolchicoside on AA in the rat. Results show both treatments provided benefits (reduced swelling, reduced IL-17, and histological changes) similar to the drug diclofenac.
Akramas et all. 2017 Turkish J Vet Anim Sci, 2017, 41:748-756	Anti-inflammatory and anti-oxidative effects of herbal preparation EM 1201 in adjuvant arthritic rats	This study investigated effects of 2 herbal formulas in rats with adjuvant arthritis (an RA model) Turmeric, Devils Claw, Milk Thistle with and without MSM were compared with the NSAID Dilcofenac. Results show these formulations are promising agents comparable to DF and may provide a safer alternative for the treatment and prevention of arthritis.
Ezaki et al. 2012 J Bone Miner Metab. 2013 Jan;31(1):16-25. doi: 10.1007/ s00774-012-0378-9. Epub 2012 Aug 10.	Assessment of Safety and Efficacy of MSM on Bone and Knee Joints in OA Animal Model	This study evaluated cartilage formation in growing rats and cartilage degradation in mice, both are acceptable Human OA models at recommended human dosage of 0.6g/kg BW/day and at 10x & 100X. Intake of MSM for 4 wks did not affect cartilage formation in rat's knee joints. MSM Intake for 13 weeks decreased degeneration of the cartilage on knee joint surface of the mice. 100X dosage significantly decreased organ wt. compared to control.
Hasegawa T, Ueno S, Kumamoto S, Yoshikai Y 2004 Jpn Pharmacol Ther 2004;32(7):421-7.	Suppressive effect of methylsulfonylmethane (MSM) on type ll collagen-induced arthritis in DBA/1J mice	Oral administration of OptiMSM® modified immune responses in DBA/1J mice. Arthritic deformation and swelling induced by type II collagen injections (an animal model of rheumatoid arthritis) were significantly diminished in mice drinking MSM compared to controls. Abnormal white blood cell proliferation in lymph nodes was also reduced in mice drinking MSM.
Murav'ev et al. 1991 Patol Fiziol Eksp Ter 1991, 2:37–39	Effect of DMSO and MSM on a Destructive Process in the Joints of Mice with Spontaneous Arthritis	Oral administration of DMSO or its main metabolite MSM lessened the destructive changes in joints of 36 Mrl/Mn/lnr female mice.
Moore et al. 1985 Proceedings of Fed of American Soc. Of Exp Bio 1985, 530: Abstract 692	Diminished Inflamma- tory Joint Disease in MRL/Ipr Mice Ingesting DMSO or MSM	A 3% solution of either DMSO or MSM was administered in drinking water, ad libitum for 3 months. Inflammatory reaction of synovial tissue was found in 95% of control, 82% of DMSO and 71% of MSM. Pannus formation was significantly reduced in MSM vs. placebo.

Oxidative Damage Protection Studies

Oxidative Damage Protection Studies-Animal	Study Title	Study Summary
Abdel-Rafei, MK, & Thabet, NM 2020 J Clin Aesthet Dermatol. (2019) 12(4):40-45. Life Sciences, 260, 118410. https://doi.org/10.1016/ j.lfs.2020.118410	Modulatory effect of methylsulfonylmethane against BPA/y-radiation induced neurodegener- ative alterations in rats: Influence of TREM-2/DAP-12/Syk pathway.	BPA and γ -radiation (GR) were used to mimic Alzheimer's neurodegeneration. They were applied both sub-acutely and weekly, and with/without MSM. BPA and GR induced typical neurodegenerative markers (TNF- α , IL-1b, Alzheimer's markers (amyloid-beta, AchE, tau). MSM normalized the markers, suggesting neuroprotection for BPA and GR.
Mdawar et al. 2019 Elixir Pharmacy 128 (2019) 52786-52790	The Protective Effect of Methyl Sulfonyl Methane on Peptic Ulcer Induced by Alendronate	MSM administered before alendronate inducing ulcer showed significant difference leading to the conclusion MSM has a protective effect of peptic ulcer from alendronate.
Amirshahrokhi, K et al. 2017 European J of Pharmacology, 2017, http://dx.doi.org/ 10.1016/j.ejphar.2017.06.034	Methylsulfonylmethane is effective against gastric mucosal injury	This study evaluated Oral MSM's effect on ethanol/HCL induced gastric injury. Pre-treatment with MSM significantly increased GSH, CAT, and PGE2 and significantly decreased gastric inflammation (NF k β , TNF- α , IL-1 β , IL-6, MCP-1) and oxidative damage (MDA, MPO, PC, and NO).
Radwan et al. 2016 J of Biomed and Pharma Res, 2016, 5(3):10-17 OptMSM Study using	Actions of Taurine, Methylsulfonylmethane and Silymarin Against Acetaminophen- Induced Neuro- and Hepato-Toxicity in Rat	This study evaluated the effects of pretreatment (14 days) with either MSM (400mg/kg/day), taurine, or silymarin on acetamino- phen (APAP)-induced liver and brain injury in rats. MSM pretreatment resulted in significant amelioration, over control, of APAP-induced changes in liver enzymes AST and ALT; brain and liver markers of oxidative stress - MDA, GSH, GSSG, NO, and 8-OHdG; and 2 brain monoamines - norepinephrine, and serotonin. MSM significantly outperformed taurine and silymarin pretreatment in liver NO levels and brain 8-OHdG.
Amirshahrokhi, K. et al. 2013 Inflammation. 2013 Oct;36(5):1111-21. doi: 10.1007/s10753-013-9645-8.	Effect of MSM on Paraquat-Induced Acute Lung and Liver Injury in Mice	Mice treated with 500mg/kg/day i.p. for 5 days histological and biochemical examination of lung and liver tissue. Results showed a significant reduction in liver and lung tissue damage and a significant reduction in tissue levels of MDA, MPO and TNF- α . MSM significantly increased level of SOD, CAT and GSH. Findings suggest MSM attenuates PQ-induced pulmonary and hepatic oxidative injury.
Bohlooli et al. 2013 Iran J. of Basic Med Sci, 2013, 16:896-900 OptMSM Study using	Effect of Methylsulfo- nylmethane Pretreat- ment on Acetamino- phen Induced Hepato- toxicity in Rats	The study evaluated effect of pretreatment of MSM on acetaminophen-induced liver injury in rats. Dosage of MSM pre-treatment = 100 mg/kg BW for one week. On day 7 rats received acetaminophen @ 850mg/kg to induce liver injury. Blood serum levels of AST and ALT measured 24 hrs post dose. Tissue samples of liver were evaluated for MDA, GSH, SOD and MPO activity. Results show acetaminophen caused a negative impact on all measured biological indices and pre-treatment with MSM significantly attenuated this negative impact.

Kamel et al. 2013 Arch. Pharm. Reas. 2013, doi:10.1007/s12272-013-01 10-x	Hepatoprotective Effect of MSM Against Carbon Tetrachloride-Induced Liver Injury in Rats	Pre-treatment with MSM (400mg/kg) before a single dose of CCl4 (2ml/kg, i.p.) inhibited serum ALT and AST activities, decreased liver MDA, TNF-α, IL-6 and Bax/Bcl2 ratio compare to CCl4 group. MSM raised SOD and CAT activity as well as CYP2E1 level in liver tissues. MSM protects liver from CCl4 injury possibly through its antioxidant, anti-inflammatory and anti-apoptotic properties.
Mohammadi et al. 2012 Adv in Pharma Sci 2012, doi:10.1155/2012/507278	Protective Effects of MSM on Hemodynamics and Oxidative Stress in Monocrotaline-Induced Pulmonary Hypertensive Rats	MSM administered to rats at 100, 200, and 400 mg/kg/day for 10 days before a single dose of 60 mg/kg, IP, MCT. Blood samples analyzed for CAT, SOD, GPx, GSH and MDA. MSM treatment showed potential protective antioxidant effects by a significant increase in antioxidant enzyme activity and associated reducing agents.
Amirshahrokhi, K. et al. 2011 Tox and App Pharm 2011, doi 10.1016/j.ta- ap.2011.03.017	Effect of MSM on Experimental Colitis in the Rat	Colitis induced by intra-colonic instillation of 1 ml of 5% acetic acid. Rats treated with MSM at 400mg/kg/day orally for 4 days. Colon evaluated histologically and biochemically. Micro and macroscopic colonic damage was decreased. MDA, MPO, and IL-1 were significantly decreased while GSH levels increased. MSM may have a protective effect in experimental ulcerative colitis.
DeSilvestro et al. 2008 FASEB J, 2008, 22:445.8 Published abstract and poster presentation	MSM intake in Mice Produces Elevated Liver Glutathione and Partially Protects against CCl4 -Induced Liver Damage	MSM administration (5 weeks, 80 mg/100 ml drinking water) produced a statistically significant increase in liver GSH (mean increase of 78%). A similar effect was not seen in lung or skeletal muscle. Also, MSM partially inhibited liver injury after injection of CCl4, which induces liver oxidative stress.

Allergy/Immune Studies

Allergy/Immune Studies	Study Title	Study Summary
Hewlings & Kalman 2018 JMIR Res Protoc, 2018, 7(11): e11139 OptMSM [*] Study using	Evaluating the Impacts of Methylsulfonylmethane on Allergic Rhinitis After a Standard Allergen Challenge: Randomized Double-Blind Exploratory Study	This study evaluated the effects of a single oral dose (12grams) and sub-chronic dosages of 1, 3, or 6 grams of MSM daily for 14 days in response to a standardized allergen challenge in healthy subjects. MSM supplementation significantly alleviated participants symptoms in response to a standardized allergenic challenge.
Godwin, S. et al. 2015 Journal of the International Society of Sports Nutrition Published abstract and poster presentation	MSM enhances LPS- induced inflammatory response after exercise.	Supplementation of MSM blunted the increase in systemic levels of inflammatory cytokines (IL-6 & IL-1ß) immediately after exercise. However, Ex vivo incubation of blood from various time points with LPS caused a dramatic increase in inflammato- ry cytokines after exercise only in the group treated with MSM. Also, a 2-3 fold increase in IL-10 was seen only in the MSM group after LPS stimulation despite lower IL-10 levels before exercise.

Hasegawa T, Ueno S, Kumamoto S 2005 Jpn Pharmacol Ther 2005;33(12):1217-1223	Anti-Inflammatory Effect of Methylsulfonylmethane (MSM) in Mice	3 aspects of anti-inflammatory effects of OptiMSM evaluated: 1) Skin damage by UV, 2) Skin inflammation by ovalbumin injection and 3) Itching from histamine. Results: 1) OptiMSM suppressed skin inflammation from UV light. 2) Mice that consumed 2.5% OptiMSM in solution suppressed immediate-phase swelling reaction. 3) Scratching behavior was considerably less in mice following ingestion of 2.5% MSM solution for 1 week before histamine injections. Conclusion: Study confirms MSM is an anti-inflammatory agent, and it mitigates abnormal immune reactions that trigger inflammation.
Barrager E, Veltmann JR, Schauss AG, Schiller RN 2002 J Altern Complement Med 2002; 8:167–73. OptMSM Study using	A Multi-Centered, Open Label Trial on the Safety and Efficacy of Methylsulfonylmethane in the Treatment of Seasonal Allergic Rhinitis	50 person study consumed 2600mg/day MSM orally for 30 days. Clinical respiratory symptoms and energy levels evaluated by questionnaire at the beginning and @ days 7, 14, 21, and 30. Immune and inflammatory reactions were also determined by lab tests. After 1 week, frequency of upper respiratory symp- toms were significantly improved. At 3 weeks, participants also had significant improvements in lower respiratory symptoms. All respiratory improvements were maintained through day 30. Energy levels improved significantly by day 14, and were maintained through day 30. Minimal side effects reported during trial.
Sulfur Donation Studies- Animal	Study Title	Study Summary
Wong et al. 2018	Small Intestinal	This study used radiolabeled S(35) to evaluate the absorption
Nutrients, 2018, 10(19):1-9	Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice	and metabolism of MSM using mice. The study found that MSM is easily and readily absorbed in the small intestine, creating a pool of sulfur available to the body, relieving the bioburden on SAAs. It found that MSM sulfur in incorporated into proteins, likely though post-translational sulfation.
Nutrients, 2018, 10(19):1-9 OptMSM ^{Study using} Richmond, V, 1986 Life Sciences 39 (1986): 263-268	Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins	and metabolism of MSM using mice. The study found that MSM is easily and readily absorbed in the small intestine, creating a pool of sulfur available to the body, relieving the bioburden on SAAs. It found that MSM sulfur in incorporated into proteins, likely though post-translational sulfation. Guinea pigs were fed MSM with radiolabeled sulfur – S[35]. Cysteine and methionine were found radiolabeled, indicating incorporation of the MSM sulfur into SAAs.
Nutrients, 2018, 10(19):1-9 OptMSM Study using Richmond, V, 1986 Life Sciences 39 (1986): 263-268 Reviews	Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins Review Title	and metabolism of MSM using mice. The study found that MSM is easily and readily absorbed in the small intestine, creating a pool of sulfur available to the body, relieving the bioburden on SAAs. It found that MSM sulfur in incorporated into proteins, likely though post-translational sulfation. Guinea pigs were fed MSM with radiolabeled sulfur – S[35]. Cysteine and methionine were found radiolabeled, indicating incorporation of the MSM sulfur into SAAs.
Nutrients, 2018, 10(19):1-9 OptMSM Study using Richmond, V, 1986 Life Sciences 39 (1986): 263-268 Reviews Hewlings & Kalman, 2019 EC Nutrition 14.9 (2019): 785-791	Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins Review Title Sulfur in Human Health	and metabolism of MSM using mice. The study found that MSM is easily and readily absorbed in the small intestine, creating a pool of sulfur available to the body, relieving the bioburden on SAAs. It found that MSM sulfur in incorporated into proteins, likely though post-translational sulfation. Guinea pigs were fed MSM with radiolabeled sulfur – S[35]. Cysteine and methionine were found radiolabeled, indicating incorporation of the MSM sulfur into SAAs. Review Summary Review article of the multiple roles sulfur plays in human health and nutrition, concerns about sufficient intake, and the ways MSM can address those concerns.
Nutrients, 2018, 10(19):1-9 OptMSM Study using Richmond, V, 1986 Life Sciences 39 (1986): 263-268 Reviews Hewlings & Kalman, 2019 EC Nutrition 14.9 (2019): 785-791 Butawan, M 2017 Life Sciences 39 (1986): 263-268	Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins Review Title Sulfur in Human Health Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement	and metabolism of MSM using mice. The study found that MSM is easily and readily absorbed in the small intestine, creating a pool of sulfur available to the body, relieving the bioburden on SAAs. It found that MSM sulfur in incorporated into proteins, likely though post-translational sulfation. Guinea pigs were fed MSM with radiolabeled sulfur – S[35]. Cysteine and methionine were found radiolabeled, indicating incorporation of the MSM sulfur into SAAs. Review Summary Review article of the multiple roles sulfur plays in human health and nutrition, concerns about sufficient intake, and the ways MSM can address those concerns. Review article provides an overview of MSM (methylsulfonyl- methane) with details regarding its common uses and applica- tions as a dietary supplement as well as safety for consumption.

